
ÉPITA Final Internship Report

Quality of Service Routing in

Wireless Mobile Ad hoc Networks with

IPv6 Support

Ignacy GAWĘDZKI <ig@lrde.epita.fr> — 13147 — CSI Promo 2003

01 February – 31 July, 2003

Within the

Networking research group of the

Laboratoire de Recherche en Informatique,
University of Paris-Sud, Orsay.

Under the direction of

Dr. Khaldoun AL AGHA <alagha@lri.fr>

mailto:ig@lrde.epita.fr
mailto:alagha@lri.fr

2

Contents

1 Introduction 7

1.1 The subject . 7
1.1.1 Ad hoc networks . 7
1.1.2 Routing in MANETs . 8
1.1.3 QoS routing in MANETs . 9

1.2 The LRI . 9
1.3 State of knowledge . 10
1.4 My own state of knowledge . 11
1.5 Working environment . 11

2 Organization and time-line 13

2.1 Setting up of the working platform: 1 month . 13
2.2 Bibliographical research: 2 months . 13
2.3 Development of the OLSR implementation: 3 months 14
2.4 Comments on the time-line . 14

3 Technical details 15

3.1 Development and testing platform . 15
3.1.1 The cross-compiler . 15
3.1.2 The Familiar distribution . 15
3.1.3 The USAGI IPv6 stack . 17
3.1.4 Other specifics of cross-compilation for ARM 17

3.2 QoS routing in mobile ad hoc networks with IPv6 support 17
3.2.1 IPv6 specifics . 17
3.2.2 IEEE 802.11 Wireless networking . 18
3.2.3 Routing in mobile ad hoc networks . 20
3.2.4 QoS considerations . 21

3.3 Internals of Polyester . 22
3.3.1 Introduction . 22
3.3.2 Motivations . 25
3.3.3 General architecture . 26
3.3.4 Scheduling . 27
3.3.5 Message handling . 29
3.3.6 Sets handling . 30
3.3.7 Linux kernel specifics . 31
3.3.8 Various utility features . 32
3.3.9 Particular aspects with respect to RFC 3626 34
3.3.10 Aspects of the free software project . 34

3

4 Conclusion 37
4.1 Interest of the internship for the LRI Networking group 37
4.2 Personal interest of the internship . 38
4.3 Looking back and perspectives . 38

A Glossary 43

4

Summary

This report describes my final ÉPITA1internship among the Networking group at the LRI2, Paris-
Sud University, France. The internship was directed by Dr. Khaldoun Al Agha and was entitled
“Study and implementation of QoS routing protocol for wireless ad hoc networks with IPv6
support”.

QoS in Wireless mobile ad hoc networks

Wireless mobile ad hoc networks (MANETs) are gaining inscreasing interest for several years
now with the advent of widely available IEEE 802.11 [1] compatible wireless network interface
cards. The potential uses are where a wired network infrastructure is not existing or not us-
able, ranging from military communication on the battlefield, rescue squads communications in
a disaster area to commercial ambient computing.

The standard specification defines two operating modes for these cards: infrastructure and
ad hoc. In infrastructure mode, the wireless link is merely a way to connect a computer to a
classical wired network. On the other hand, in ad hoc mode, wireless interfaces can communi-
cate with one another on the sole condition they are in the communication range (receiving and
transmitting) of one another. With the use of a proper routing algorithm, a large group of mobile
nodes with wireless interfaces operating in ad hoc mode and evolving in close geographical loca-
tions can form an autonomous and dynamic network of nodes that can reach one another using
intermediate nodes as relays if they are not in direct communication.

MANET routing with OLSR and IPv6

Several routing protocols have been proposed within the Manet working group at the IETF3but
few of them, if any, had existing working implementations which supported the IPv6 address
family.

The Safari project, in which the internship tool place, required the use of a routing protocol
that supported IPv6. Thus after the study of previous work on quality of service (QoS) routing in
wireless mobile ad hoc networks, the goal was to write an implementation of the OLSR protocol
with IPv6 support in order to provide an experimental platform for the later implementation of
QoS methods.

The Polyester [k6lI"est@r] project

The implementation of the OLSR protocol was done in the C++ programming language[2] and
was released as a free software project called Polyester. The implementation is made in a mod-
ular way that allows easy extension for further evolution.

1École Pour l’Informatique et les Techniques Avancées, http://www.epita.fr
2Laboratoire de Recherche en Informatique, http://www.lri.fr
3Internet Engineering Task Force, http://www.ietf.org

5

http://www.epita.fr
http://www.epita.fr
http://www.lri.fr
http://www.lri.fr
http://www.ietf.org
http://www.ietf.org

6

Chapter 1

Introduction

1.1 The subject

The subject of the internship was “Quality of service routing in ad hoc networks with IPv6 sup-
port”, which is a pretty large field of research at this time. This is because it contains three
important keywords: “ad hoc networks”, “routing” and “quality of service”.

1.1.1 Ad hoc networks

By “ad hoc networks”, one usually means more precisely “wireless mobile ad hoc network”,
often called MANET for short.

Wireless networks are formed by nodes (or stations) equipped with a radio network inter-
face capable of transmitting data packets to some other node within its radio range. Today’s
widely available standard IEEE 802.11 cards can be set to operate in two distinctive modes called
infrastructure and ad hoc.

The infrastructure mode considers two kinds of nodes: client stations and access points. The
former differs from the latter in that it can communicate only with an access point and that the
latter is necessarily connected to some wired infrastructure. Thus in infrastructure mode, the
wireless links are merely an extension of the wired network and a station cannot communicate
unless it is associated with an access point in its communication range. Infrastructure mode also
supports extended coverage where several access points are spread over an area (overlapping or
disconnected) and are wired together to form one large logical network.

In ad hoc mode, each station can potentially communicate with any other in its transmitting
or receiving range, thus requiring no pre-existing wired infrastructure. Hence a set of stations
located near one another form a network. If the intersection of all the communication ranges
does not contain all the stations, there are some pairs of stations that cannot communicate with
one another and would thus require relaying by other stations. For this reason, every station can
be considered a host as well as a router.

7

Figure 1.1: A wireless ad hoc network

Ad hoc networks bear some resemblance to wired networks in that stations in the commu-
nication range of one another form a network link and the whole ad hoc network can be repre-
sented by a graph. But the similarity stops here for two obvious reasons: the graph is not static,
for stations are not spatially fixed and links are prone to interference from other stations, other
radio equipment or simply shielding by some obstacles. Moreover, the stations being often bat-
tery powered, they have limited resources in power and transmission range. For these reasons,
mobile ad hoc networks are dynamic.

1.1.2 Routing in MANETs

Since ad hoc networks are so-called multi-hop, we need routing algorithms to let stations relay
packets towards a given destination.

Routing algorithms for static wired networks are not well suited for ad hoc networks because
of their dynamic nature. In wired networks, the topology is known in advance and links are
stable, whereas in ad hoc networks the topology changes all the time and stations may appear
and disappear at any time.

The field of routing in ad hoc networks has been active for at least the past ten years. There
are already many applications of multi-hop ad hoc networks, mainly because of its lack of infras-
tructure need: battlefield, disaster area, etc.

Routing algorithms for ad hoc networks can be separated into two families: re-active and
pro-active. In the former, a route is calculated on demand, when a node needs to send a packet
to a destination. In the latter, each node maintains a routing table at each moment. Re-active
algorithms often necessitate the broadcasting of a probe packet to find a suitable path towards
the destination, whereas pro-active algorithms need control messages to be exchanged to learn
the network topology.

Each one family has its advantages and drawbacks. Re-active algorithms add a delay when-
ever a new route is required (be it for a new communication or a change in the topology). Pro-
active algorithms require broadcasting control packets to all the nodes at a regular pace to spread
topology information.

8

1.1.3 QoS routing in MANETs

Be it in military, rescue or simply commercial contexts, there are applications that require some
constraints to be fulfilled on the path towards the destination. For example, real-time audio- or
video-conferencing require minimal delay and bounded bandwidth, but support packet loss to
some extent, whereas file transfer must be loss-free but can stand bandwidth variations. In wired
networks, Quality of Service (QoS) routing is used for some time now and there are several
models that work pretty well. But these models rely on the static nature of wired networks and
thus cannot be applied as such to MANETs. For example, no one can guarantee QoS constraints
for some communications, since the network changes with time and two nodes can totally loose
connectivity in the most extreme case.

Thus routing algorithms for ad hoc networks are an open research problem for the time being.

1.2 The LRI

The Laboratoire de Recherche en Informatique is a CNRS1 UMR2 which means that it is co-
directed by the CNRS and the University of Paris-Sud3. It has been created in 1974 and is located
on the University’s campus of Orsay, in a region densely packed with research and academic
institutions as well as industrial complexes.

The purpose of the laboratory is to conduct research and academic activities in a wide range
of theoretical as well as applied fields. It currently employs 15 CNRS, 58 university and 34 invited
researchers, 59 Ph.D students, 13 administrative personel, engineers and technicians. It publishes
200 publications and 18 Ph.D theses each year. It is currently operating on 29 public, 25 european
and 5 private contracts and in 30 industrial collaborations.

The laboratory is composed of 10 research teams:

• Graph Theory

• Algorithms and Complexity

• Programming

• Databases

• Proofs and Programs

• Parallel Architecture

• Parallelism

• Artificial Intelligence and Inference Systems

• Inference and Learning

• Bioinformatics

Each team is further divided into research groups and each of them may conduct several
distinct research activities.

The internship took place among the Programming team, which is divided into three groups:

• Software Engineering

• Human-Computer Interaction

• Networking

1Centre National de la Recherche Scientifique http://www.cnrs.fr
2Unité Mixte de Recherche
3Université de Paris-Sud, http://www.u-psud.fr

9

http://www.cnrs.fr
http://www.cnrs.fr
http://www.u-psud.fr
http://www.u-psud.fr

The internship took place among Networking group led by Dr. Khaldoun Al Agha. The
research topics of the group are third and fourth generation mobile networks, IP mobility, mobile
ad hoc networks and group mobility.

The context was that of the Safari1 project of the RNRT2 which is aimed at the conception,
combination and realization of a protocol and software infrastructure for transparent access, au-
tomatic configuration, integration and adaptation of services on an IPv6 network in ad hoc mode
with wired connections.

The Safari project is thus a collaboration between many industrial and research partners:
FTR&D3, Alcatel4, INRIA5, LIP66, LRI7, LSIIT8, LSR-IMAG9, SNCF10and ENST11.

1.3 State of knowledge

The relation between the subject of QoS routing and the Networking group of the LRI is self-
evident. Wireless networks are the main research interest of the group for some time now. Khal-
doun Al Agha is a specialist of the field, after many years of research and publication.

Routing in MANETs without QoS has been actively studied for the last several years among
the Manet IETF group. Four experimental routing protocols emerged from this effort:

• Re-active protocols:

– Dynamic Source Routing (DSR)[3]

– Ad hoc On Demand Distance Vector (AODV)[4]

• Pro-active protocols:

– Topology dissemination Based on Reverse-Path Forwarding (TBRPF)[5]

– Optimized Link State Routing (OLSR)[6]

The decision was made that the Safari project would be using the OLSR protocol, developed
by the HIPERCOM12team at INRIA Rocquencourt.

At the beginning of the internship, the OLSR protocol was at the draft stage. The current
version was 7, to be shortly superseded by version 8 in March 2003, version 9 in April 2003,
version 10 in May 2003 and version 11 in July 2003. At the time of writing, the OLSR protocol is
published as an Experimental RFC13, RFC 3626[6].

Nevertheless, the OLSR protocol could not be used as such because it does not support QoS
routing and no implementation available at that time supported the IPv6 address family, though
OLSR was designed to be independent of the protocol family.

1http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm
2Réseau National de Recherche en Télécommunications, http://www.telecom.gouv.fr/rnrt
3France Telecom Recherche et Développement, http://www.rd.francetelecom.fr
4Alcatel, http://www.alcatel.fr
5Institut National de Recherche en Informatique et Automatique, http://www.inria.fr
6Laboratoire d’Informatique de Paris 6, http://www.lip6.fr
7Laboratoire de Recherche en Informatique, http://www.lri.fr
8Laboratoire des Sciences de l’Image, de l’Informatique et de la Télédétection, http://lsiit.u-strasbg.fr
9Laboratoire Logiciels Systèmes Réseaux de l’Institut d’Informatique et Mathématiques Appliquées de Grenoble,

http://www-lsr.imag.fr
10Société Nationale des Chemins de Fer, http://www.sncf.fr
11École Nationale Supérieur des Télécommunications, hrefhttp://www.enst.frhttp://www.enst.fr
12HIgh PERformance COMmunication, http://www.inria.fr/recherche/equipes/hipercom.en.html
13Request For Comments

10

http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm
http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm
http://www.telecom.gouv.fr/rnrt
http://www.telecom.gouv.fr/rnrt
http://www.rd.francetelecom.fr
http://www.rd.francetelecom.fr
http://www.alcatel.fr
http://www.alcatel.fr
http://www.inria.fr
http://www.inria.fr
http://www.lip6.fr
http://www.lip6.fr
http://www.lri.fr
http://www.lri.fr
http://lsiit.u-strasbg.fr
http://lsiit.u-strasbg.fr
http://www-lsr.imag.fr
http://www-lsr.imag.fr
http://www.sncf.fr
http://www.sncf.fr
http://www.enst.fr
http://www.inria.fr/recherche/equipes/hipercom.en.html
http://www.inria.fr/recherche/equipes/hipercom.en.html

1.4 My own state of knowledge

My knowledge of IPv4 networking was that of a young student having toyed with his Linux
computer(s) for several years. I had very basic routing notions and absolutely no experience
with wireless networks. I also had very basic knowledge of IPv6 specifics.

What I knew pretty well was how to develop on a GNU/Linux platform with free software
development tools. In addition, I made my research debuts at the LRDE1during my engineering
years at ÉPITA and had notions about how research activities were usually conducted.

I found the perspective of doing this internship very interesting not only because of the sub-
ject, but also because I knew I wanted to work in a research environment in some laboratory.
The perspective of working on a research subject, requiring to keep contact with several research
teams at once, composed of Ph.D students as well as doctors and professors, on a project that
would end up in a concrete realization appealed me very much.

My aspirations were at the crossing of applied research and innovative development, so this
internship was all-the-most suited.

1.5 Working environment

Since the very beginning of the internship, I was provided everything I needed to work efficiently.
I was assigned a desk in an office where two Ph.D students were already working. I was offered
to receive a computer to put on my desk, but I proposed to bring my own workstation that I
was to take away from the LRDE and that was accepted without any problem. I was provided
complete network connectivity as soon as I brought it and connected it. I was given an account
with the login name I desired on the laboratory’s network to allow me to receive mail and connect
from the outside.

I also received all special access badges and permission cards to allow me in my office at any
time of day or night, which pleased me very much since I sometimes like to work late at night.

In addition, since it was believed that I could work in cooperation with the HIPERCOM team
at INRIA Rocquencourt, I was shortly introduced there and given similar access as at the LRI
(account, mail and late night access).

Working on concrete experimentations with wireless networks implied the use of PDAs2 with
wireless network interfaces which were provided to me since the very beginning. I was also
offered to receive an additional laptop computer as soon as the budget for the Safari project
would be available.

For matters related to documentation, I was able to use the LRI library which happened to
be located right at the end of my corridor. Although the library is very well supplied, I made
little use of it, since most of the information I required was available publicly on the Internet. Of
course, I was able to print anything I needed on fast laser printers.

Over the course of the internship I kept regular contact with my director and the Ph.D stu-
dents of the group. I also had pretty regular contact with Ph.D students of the teams working
on Safari at the LIP63as well as the HIPERCOM team at INRIA Rocquencourt, though to a lesser
extent. For all network-related or scientific questions, the group members including my director
were very helpful, be it by direct discussion or email.

1Laboratoire de Recherche et Développement de l’ÉPITA, http://www.lrde.epita.fr
2Personal Digital Assistant
3Laboratoire d’Informatique de Paris 6, http://www.lip6.fr

11

http://www.lrde.epita.fr
http://www.lrde.epita.fr
http://www.lip6.fr
http://www.lip6.fr

12

Chapter 2

Organization and time-line

The internship started shortly after the beginning of the Safari project which was planned to last
33 months. The end of my internship coincided with the first deliverable of the project which
was bibliographical: a state of the art of QoS routing in MANETs. Of course it was clear that
my internship would not be only composed of bibliographical work as I was hired to help the
group get a working implementation of the OLSR protocol with support of IPv6 to subsequently
implement the QoS models that were worked out theoretically and tested in simulators.

In fact this was the only constraint on the time-line of the internship. The rest was left for me
to organize as I wished.

2.1 Setting up of the working platform: 1 month

Prior to any development work, I had to set up the development platform which was composed
of my working station and several PDAs based on StrongARM processors and able to run a Linux
kernel.

So to be able to develop for such computers, I had to set up a whole cross-compilation envi-
ronment on my workstation. Direct compilation is impossible since the PDAs have pretty limited
memory resources (16 Mb of flash mass memory and 32 Mb of SDRAM for the models that were
able to run Linux at that time).

2.2 Bibliographical research: 2 months

Since my knowledge in the field of QoS routing in MANETs with IPv6 was very limited, I had to
spend a lot of time studying the existing publications on the matter.

I started with the IETF RFCs and books[7] about the IPv6 protocol family. Then I had to
familiarize with the way IEEE 802.11 protocols work, since I was to work with this kind of widely
available hardware. Subsequently I had to study existing and experimental best-effort routing
protocols for MANETs and lastly I had to study those that have been designed to address QoS
requirements. Meanwhile, I also studied QoS support in wired networks, since existing working
solutions in wired networks preclude any reading about QoS in MANETs, for the latter is much
influenced by the former.

At the end of this part of the work, I was asked to write a state-of-the-art report on the matter,
which was to be used as a starting point for the first deliverable for Safari. I was also convinced
to submit this paper to IEEE Wireless Communications, which appeared to be calling for just this
kind of papers at that time for a special issue.

13

2.3 Development of the OLSR implementation: 3 months

This part in fact really started at the same time as the bibliographical work, but had to be de-
layed for several reasons. After having first tried to reuse an existing OLSR implementation
and adapt it from IPv4 to IPv6, I had to resign myself to re-implement it from scratch, since the
state of the existing code was terrible and would require too much work. Besides, the existing
implementation was written in the C programming language, which was far from being a first
choice language for large projects which make use of pretty abstract notions as sets and reusable
components.

I managed to convince, though without much trouble, my director to allow me to re-implement
the OLSR protocol from scratch using the C++ language which I knew pretty well from my time
at the LRDE. It has much better suited features for set processing and generic components than
C and can be used in a way that generates binary code is as efficient as code generated from C
code.

Of course this was a compromise because if it were only a matter of language and efficiency,
I would certainly have chosen Objective Caml. But I had to take into account the fact that peo-
ple in the networking field are seldom programming theorists and don’t know many modern
languages. If the project had to be taken over by somebody else from the field at a later time, it
would have been written in some language understood and mastered by her, otherwise all the
effort of writing it from scratch would have been wasted.

2.4 Comments on the time-line

This time-line was not completely planned from the beginning of the internship since the work
was not obvious at all. If it had been possible to use an existing implementation of OLSR and the
adapting work had been easy, the third part would have been shorter and there certainly would
have been a fourth part about QoS extensions and testing on the existing OLSR implementation.
This was not necessarily what was intended at the beginning and was pretty much the unknown
in the equation. It would have balanced the work more towards research than development. I
must admit I do not feel less pleased by the actual turn the events took, because it allowed me to
express my software engineering skills with a language much less frustrating — although with
its own load of frustration — than a low-level language like C.

The third part of the internship took me more time that planned for several reasons. The
most important one was certainly that of my own perfectionism which led me not to accept
certain compromises which could have spared me considerable amounts of time and effort. I
wanted to find the best possible solution taking account of the clarity of the model and efficiency
of the code. This implied several re-workings of some parts when new ideas sparked along
the development. This was certainly not the best method to honor deadlines, but gave really
interesting results at the end. Another reason of the delay was that new versions of the draft
documents that described the OLSR protocol were released in the meantime and that subsequent
descriptions of the inner working of the protocol exhibited some unexpected aspects that were
not clear at all from previous versions.

14

Chapter 3

Technical details

3.1 Development and testing platform

The first thing to do was to make the tools work. This meant to install a cross-compilation envi-
ronment on the workstation to be able to generate executable binaries to be run on the PDAs.

3.1.1 The cross-compiler

To build a cross-compilation environment from scratch is a very tedious task, since theoretically
to build the cross-compiler, one needs a cross-compiled standard library which in turn needs a
cross-compiler to be compiled. It is a bit like the chicken and egg problem. In fact the cross-
compiler is compiled twice, once without the standard library and once again when the standard
library is available.

Luckily enough, there is a lot of people working with cross-compilers for the ARM architec-
ture, a great deal of whom is working with the very kind of PDAs I was supposed to work with.
So there were already several other means to install a cross-compiling tool-chain than to compile
it from scratch. After several attempts to do a clean installation from scratch, I resigned myself
to use an existing compiled package. This was mainly because “vanilla” GCC sources needed
patching for correct operation as a ARM cross-compiler and these patches were available only
for a limited range of GCC versions. Of course I wanted to use the latest major release of the free
compiler, which was 3.x and patches were available only for 2.9x versions.

3.1.2 The Familiar distribution

Hopefully, I had not to compile a whole GNU/Linux OS from the ground up, since there are
pretty well working distributions available to download and install. It comes with a kernel all
patched for correct operation of all the specific components of the PDAs as the flash memory, the
touch-screen, the sensors, the sound and the most important: the PCMCIA add-on sleeve and
the Orinoco wireless IEEE 802.11b PCMCIA network card.

One of the iPAQs was already running some older version of Familiar1, but another one was
freshly taken out of the box and qualified for total conversion. This comprised the installation of a
boot-loader, released by the Hewlett-Packard (formerly Compaq and even earlier Digital Equip-
ment Corp.) Cambridge Research Laboratory and the installation of the Familiar distribution.

1http://familiar.handhelds.org

15

http://familiar.handhelds.org
http://familiar.handhelds.org

Figure 3.1: The boot-loader splash screen

The boot-loader image had to be sent over the serial line to the flash partition on the PDA.
Then a flashing utility also had to be sent the same way. Once the new boot-loader was installed,
the PDA had to be rebooted and the rest of the operation had to be conducted using the command
line of the boot-loader on the serial port, using some terminal emulation software as Minicom.
The distribution had then to be sent as an image to be written over the flash boot partition with
the help of the boot-loader. This operation took some considerable time, since the image has to
be uploaded using XMODEM or YMODEM (an old but pretty simple file transfer protocol over
serial lines).

Figure 3.2: The shell in the OPIE environment

Once the transfer finished, the system could be booted and later either used with the stylus

16

and the graphical interface, or by the way of the command line on the serial console. The com-
mand line on the console is a plain GNU/Linux login prompt and a shell. The distribution bears
some resemblance with Debian in the way software packages are managed. Once the wireless
network card is configured, new software packages can be installed from the network, which
simplifies and speeds up things very much.

3.1.3 The USAGI IPv6 stack

The problem with IPv6 — apart from it not being yet widely used — is that the state of develop-
ment in “vanilla” Linux kernels is poor and not up to date with standards. So anyone willing to
do serious work with IPv6 needs to use a package with a much more up to date version devel-
oped by a team in Japan and dubbed USAGI (UniverSAl playGround for Ipv6)1. This package
contains a kernel patch and a set of tools for network management. It is available in two versions:
stable and experimental, the latter being released in snapshots every two weeks.

Of course, the patch is generated against “vanilla” kernel sources and so applies cleanly to
this flavor. The set of tools allows to take into account some IPv6 specifics that are not possible
with standard IPv4 traditional tools (like routing table management, etc).

But as far as the ARM architecture is concerned, the task gets a bit more tricky. One has to
merge the heavy patch-set required by the iPAQs with the USAGI patch. The patches are not
applicable as such since the iPAQ patch-set already makes its own modifications to the IPv6
stack. In fact the solution lies in a straight replacement of sources files in the kernel source tree,
but the way of doing it properly has to be dug up from some deeply hidden mailing list archives.

3.1.4 Other specifics of cross-compilation for ARM

Once I had a working kernel with top-of-the-shelf IPv6 support, I was faced with other annoying
little problems. The version of the standard C library used by Familiar was not the same as the
one available in source form, so the binaries had to be statically linked with the version on the
workstation. This produced larger executables which could be problematic at some later point, if
debugging using GDB on the iPAQ was necessary.

At a later time when C++ code had to be cross-compiled, the fact that I had only GCC-2.9x
version as a cross-compiler meant that all the compatibility problems between GCC-2.9x and
GCC-3.x had to be worked out before any testing. This meant that some C++ code that is com-
piled without problems with GCC-3.x would not compile with GCC-2.9x. Fortunately, these were
pretty trivial language issues that could be worked out pretty easily at the beginning. At some
later point in time, I found a way to install a GCC 3.2.3 cross-compiler, so the compatibility prob-
lems vanished. . . Or so until I tried to compile using GCC 2.9x again and it appeared that the
incompatibility issues have become impossible to solve, mainly because version of GCC earlier
than 3.x use a non-standard STL implementation.

3.2 QoS routing in mobile ad hoc networks with IPv6 support

To familiarize myself with the field, I had to conduct bibliographical research along four principal
axes.

3.2.1 IPv6 specifics

Today’s Internet relies on a protocol engineered nearly thirty years ago. Though very visionary,
its designers could not foresee all the problems that were to arise in the meantime. Among oth-
ers, the most obvious and also recurrent problem was that of underestimating future needs: the
Internet address space appears to be too tight for tomorrow’s applications. Hence in 1994, the

1http://www.linux-ipv6.org

17

http://www.linux-ipv6.org
http://www.linux-ipv6.org

IPng IETF working group was formed [8] [9] to design what was to become the Internet Proto-
col version 6 (IPv6) [10] address family, destined to supersede its predecessor, namely Internet
Protocol version 4 (IPv4) [11] [12] [13]. This subsection illustrates main IPv6 features.

Larger address space The main goal of the promotion of IPv6 was the new address space [14]
[15], which was to address the imminent lack of IP addresses in the currently used IPv4. In fact,
IPv4 addresses are 32 bits integers and thus can code at most 2

32 different addresses. The point
is that this address space is divided in classes [16] in such a way that today many portions of the
address space are unused as much as unusable, because they were wasted at early times when
they were not a scarce resource. IPv6 addresses are 128 bits long and can thus code 2

128 different
addresses, which seems to be enough for some time to come.

Auto-configuration of nodes One bad thing about large addresses is that no one really wants
to manage then by hand, so along with the new address space, IPv6 comes with a clever way of
making the network interfaces configure themselves automatically [17], replacing the need for
DHCP servers and the like.

The address space is also divided in many classes, differentiated by their prefix. In fact one
interface would have many different addresses used alternatively depending on the purpose of
the communication. There are so-called link-local addresses, which prefix is fe80::/10 1, site-
local addresses which prefix is fec0::/10 and the global addresses which prefix is 0200::/3.

After a network interface comes up, it assigns itself a link-local address automatically using
its MAC address or any other scheme, depending on the underlying MAC architecture. Then
an address conflict resolution protocol is followed on the link to avoid ending up having two
interfaces on the link having the same link-local address. If an address collision is detected, other
address attribution schemes are applied and the operation is repeated.

After having configured its link-local interface, a node sends control packets called router
solicitations to ask whether there is a router on the link. If a router is present, it answers with a
router advertisement to announce its existence to the new node and to provide it with a site-local
or global prefix. When a node receives the prefix, it configures its site-local or global address and
is able to talk to the outside world. This implies that routers are forbidden to forward link-local
packets between interfaces and that site-local packets between sites.

Multicasting Broadcasting does not exist anymore in IPv6 and has been replaced with multi-
casting [18]. There are several address prefixes used for multicasting. The ff01::/16 is the
host-local multicast prefix and ff02::/16 and ff05::/16 are respectively the link-local and
site-local multicast prefixes. There exist other multicast prefixes, each provided for a well-defined
purpose. Following the 16 bits prefix, comes the 112 bits multicast group which in turn is stan-
dardized. For example, the ::1 group means all-nodes, whereas ::2means all-routers. So when
a node wishes to multicast to all nodes on the local link, it has to use the ff02::1 multicast ad-
dress.

Anycasting This is a new way of addressing nodes on a network. Its purpose is to address the
first reachable node in terms of network routing distance. It can be used for services discovery,
etc.

3.2.2 IEEE 802.11 Wireless networking

The widely available IEEE 802.11b wireless network cards make it a good candidate for imple-
mentation and experimentations. From an operating system standpoint, they behave very much

1This notation exhibits two characteristics of the currently widely adopted IPv6 address notation: the :: shortcut and
the /nn notation. The former means an arbitrary number of zeroes and must be used unambiguously, while the second
indicates the length of the prefix in bits

18

like ethernet interfaces in that they have a MTU1 of 1500 bytes and have 48 bits MAC addresses.
In the physical layer, the modulation is quite different, since the medium is not a copper wire

anymore but ambient air, water, void, etc. The details of the physical modulation are outside of
the scope of the internship and are not presented here, please refer to [19] for more information.

In the data link layer, the used medium access scheme is ethernet’s cousin: CSMA/CA2 [19].
Whereas ethernet interfaces can sense the medium and transmit at the same time and hence
detect collisions, wireless interfaces have only one antenna and cannot sense the medium and
transmit at the same time. Thus collisions on the wireless medium cannot be detected and have
to be avoided. This implies the use of strategies like random back-off timers and inter-frame
silence plus positive acknowledgements.

To allow medium reuse, the interfaces label their packets with identifiers to distinguish then
from other networks in the vicinity. In addition, some amount of security is provided by the use
of keys, ciphers and authentication schemes in the data link layer. Meanwhile, the cryptographic
scheme used in wireless interfaces, called Wired Equivalent Privacy (WEP), has been proven to
have serious flaws that make it a poor security measure.

C

C

B

B

A

A

Figure 3.3: The “hidden node” problem. B “hears” both A and C, but neither does A “hear” C
nor the opposite. If A and C send a packet to B at the same time, there is a collision.

A last specific interesting point of wireless networking comes from the fact that the stations
have limited transmitting range. The so-called hidden-node problem appears when two nodes
that are too far apart to “hear” each other communicate with a third node in between. Then
any one of the extreme nodes sensing an empty medium would send a packet to the middle one
which would be not be able to do anything about the interfering packets. Off course, each node
would wait for the positive acknowledgement packet (ACK) and not receiving it for some time
would try to transmit again. But this proves to be very inefficient since the data packet can be
in fact quite long. To cope with that, flow control packets can be used for large data packets to
detect that the middle node is communicating with the other node: before sending the packet, a
node sends a Request To Send (RTS) control packet and waits for the destination to reply with
a Clear To Send (CTS) control packet. The size of the intended data packet being advertised

1Maximum Transfer Unit: the maximum length of data in a packet.
2Carrier Sense Multiple Access with Collision Avoidance. Not to be confused with ethernet’s CSMA/CD: Carrier

Sense Multiple Access with Collision Detection.

19

in the RTS and CTS packets, a node not hearing the sender would infer its presence from the
CTS reply of the receiver and would thus know the amount of time the medium has to be kept
clear. This phenomenon has an important impact on QoS routing in that the available bandwidth
at one node depends on the bandwidth of the neighboring nodes. However, the flow control
mechanism can be only used for unicast packets (i.e. as opposed to multicast or broadcast), since
the destination needs to be unique.

3.2.3 Routing in mobile ad hoc networks

The particularities of wireless mobile ad hoc networks that make routing not trivial are mainly
node mobility (i.e. a node moves geographically) and link unreliability (i.e. a link can break at
any time). They make the MANET a dynamic network for which the topology is neither known
nor stable.

In wired networks, the topology is not only known but even often planned to exhibit some in-
teresting properties for the purpose of concrete applications (trees, rings, etc). Automatic routing
at larger scales has become necessary as the Internet evolved from its simple initial architectures
of one backbone connecting several local networks. Thus, protocols for local network routing in-
formation gathering like RIP1 [20] or later OSPFOpen Short Path First, as well as external network
routing like BGP2 [21] are widely used.

Unfortunately, existing routing protocols for wired networks do not suit wireless mobile net-
works very well. Nevertheless, some of them inspired new routing protocols for MANETs.

Routing protocols for dynamic networks can be divided into two categories, namely re- and
pro-active algorithms.

Re-active algorithms

In this algorithm family, a route towards a given destination is looked for on demand, when
a request comes from a new flow. To be effective, and avoid repeating the operation at each
intermediate node, it needs caching of routes and use of a source-routing scheme, in which the
sender provides the route to be followed inside the packet header.

There are several ways to find a route towards a destination when the topology is unknown.
The most obvious one consists in broadcasting a special probe control packet with the address of
the destination. Each receiving intermediate node forwards the packet broadcasting it to all of its
neighbors, and so on until the packet reaches its destination. At each node, the probes are marked
with the route they followed to this point, so the destination receives the probes with their paths.
The destination sends one of the received probes back towards the sender using source routing
along the same path but in reverse.

source

destination

Figure 3.4: Sending probes in re-active protocols

1Routing Information Protocol
2Border Gateway Protocol

20

The use of this kind of flooding mechanism has been shown not to scale well in wireless ad
hoc networks since the number of control packets sent for one flow grow exponentially with the
size of the path. Additional use of TTL1 is essential to avoid bringing the whole network down
to its knees.

Another problem with re-active routing algorithms is that they do not implicitly adapt the
route to the changing topology and hence need a signaling scheme to inform the sender about
the need to find a new route.

Pro-active algorithms

Pro-active routing assumes that each node has at least a partial knowledge of the network topol-
ogy and maintain routing paths to any destination at any time. Thus a intermediate node can
forward the packet without the need of the latter to carry path informations along.

Network topology information is spread throughout the network in two possible ways:

Link State Nodes spread information about the links to their surrounding neighbors.
The routing table is then populated using a SPF2 algorithm on the recon-
structed topology graph of the network.

Distance Vector Nodes exchange information about the distance (in number of hops) to-
wards all the destinations they know. The routing table is thus updated
continuously, with fresh information from the neighbors. If, for one des-
tination, a neighbor advertises such a distance that, when incremented, is
still lower than the distance known so far, the latter is replaced with it and
the entry in the routing table is changed with the advertising neighbor as
next hop towards the destination.

Although a node needs not send a probe to find a route, it has to spread topology information
throughout the network. In this sense, link state and distance vector methods are equivalent since
the former spreads information explicitly by forwarding other’s topology control packets and the
latter exchanges whole distance vectors with length proportional to the total number of nodes.
The flooding problem has to be dealt with and so spreading information must be optimized to
remain scalable.

For link state methods, the idea is to allow only a subset of the direct neighborhood to for-
ward control packets. Of course, this subset should be minimal with total coverage of the 2-hop
neighborhood, but the problem of finding such a minimal set of neighbors has been shown re-
ducible to the Minimal Dominant Set problem which is NP-Complete. Therefore heuristics have
to be used instead of an exact algorithm to allow scalability.

3.2.4 QoS considerations

Quality of service (QoS) is the set of performance properties of a network that can include band-
width, delay, packet loss probability, etc.

By QoS, one generally means the set of measures to satisfy or even guarantee some constraints
on the quality of service of a network. In fact there are several different aspects of QoS one needs
to consider:

1Time To Live, often expresses in a maximum number of hops a packet is allowed to go.
2Short Path First, like the Dijkstra or Bellman-Ford algorithms.

21

QoS model This is the goal one wants to achieve, be it guarantees of hard bounds
on network parameters or flexible bounds with quality reporting, etc.

QoS-aware routing This is a routing protocol that supports finding of routes using other
criteria than simply the minimum number of hops. These criteria may
possibly be mixed together which can lead to intractable problems.

Packet scheduling This is a way to treat packets at each forwarding node, in order to pri-
oritize them properly to comply with QoS requirements. This implies
some differentiation scheme in order to classify the packets into correct
scheduling categories. Among others, possible differentiation are on a
per-flow or per-class basis.

Reservation scheme This is a way to ensure that each intermediate node is aware of the
new-coming flow and that two simultaneously started flows do not
end up using the same resources (and thus collide).

When tied up together, QoS measures allow network service providers to offer the features of
virtual circuits that allow them to sign Service Level Agreements (SLA) with customers. These
are contracts in which the provider agrees to pay fees to the customer in case the QoS is not
provided for some reason.

In wired network applications, routers and links are not supposed to break often. This as-
sumption leads to existing protocols that rely on the fact that a route will not change once it has
been reserved. Among others, the most used two are IntServ1 [22] and DiffServ2 [23] [24] [25].

The assumption does not hold anymore when the network topology changes unpredictably.
Early models based on classical models for wired networks have off course failed to achieve their
goals for this precise reason.

Other early attempts of QoS support in MANETs were based on close cooperation with the
MAC layer. An example is the DSDV+ [26] protocol that was in charge of time slots assignment
for the underlying TDMA3 medium access scheme. While this approach can be very interesting
at one time when a given MAC layer is used it can be obsoleted by the later wider adoption of
another incompatible scheme. This is the case today for DSDV+ since IEEE 802.11 standards use
the CDMA4 scheme.

Strong QoS constraints cannot be guaranteed on MANETs anyway, since nothing prevents
the topology graph to become partitioned at some point in time. The implications thus surface
up to the application layer and this suggests that a correct way to go is to create variable-QoS-
aware applications that can adjust their requirements to the network conditions. For example, an
audio-conference application could reduce sound quality to increase compression ratios in order
to require less available bandwidth when capacity of links become scarce. This would require the
applications to communicate with the routing daemon to find a good compromise.

3.3 Internals of Polyester

3.3.1 Introduction

The last part of the internship was the implementation written in the C++ programming language
of the OLSR protocol with IPv6 support.

1Integration of Services
2Differentiation of Services
3Time Division Multiple Access
4Code Division Multiple Access

22

Brief description of the OLSR protocol

The Optimized Link State Routing protocol has been developed by the HIPERCOM team at IN-
RIA Rocquencourt [27]. This subsection is a brief overview of its principles. For a detailed de-
scription, please refer to the authoritative specification in RFC 3626[6].

OLSR is based on the idea already used in OSPF[28] to spread link state information through-
out the network. Of course plain broadcast flooding of control messages does not scale at all in
MANETs, since many nodes then receive redundant information and the number of transmitted
packets grows exponentially, which dramatically increases packet collision probability.

Figure 3.5: Dumb message flooding

Neighbor sensing OLSR is a pro-active protocol, in that it maintains a knowledge of the net-
work topology at any time. To achieve that, a node must first of all sense its immediate 1-hop
links by the exchange of HELLO messages. A node populates its link and neighbor sets by using
information provided in HELLO messages received from neighboring nodes. Thus, a neighbor
exists if at least one link with that neighbor exists. HELLO messages then contain information
about the status of already known neighbors and the associated status of the link on the interface
the HELLO is being sent. A node extracts from a particular HELLO message the information
about its 1-hop neighbor but also about the 2-hop neighbors that are reachable through it.

Multi-point relays OLSR uses another broadcasting technique based on multi-point relays (or
MPRs for short): every node elects some of its 1-hop neighbors to relay information to be broad-
casted on the network. It must choose them so that they best cover its 2-hop neighborhood. Since
the problem of finding a such a minimal set of MPRs is reducible to the Dominant Set problem,
it is NP-Complete and thus an approximation based on heuristics is used. The MPR set is recom-
puted as soon as change in the node’s symmetric neighbor set or 2-hop neighbor set is detected.

23

Figure 3.6: Message flooding using the MPRs

When a node has computed its MPR set, it declares its MPR neighbors in the neighbor status
field of HELLO messages. This allows one node to see what neighbors have selected it as one of
their MPRs and thus populate its MPR selector set.

When a node receives an OLSR control message other than HELLO message, it has to forward
it further only if the sender node is contained in its MPR selector set. This way redundant flood-
ing of the network is avoided to allow better scalability. Duplicate forwarding is avoided by the
use of sequence numbers in messages and duplicate sets in each node.

To support the use of gateways and power saving, a node declares in its HELLO messages its
degree of willingness to be selected as a MPR. Thus a node gatewaying some external network
may declare a willingness of WILL_ALWAYS to be selected as MPR by all its 1-hop neighbors,
whereas a node short on battery power my declare a willingness of WILL_NEVER to avoid being
selected as a MPR at all. Varying degrees of willingness in between these two extremal values are
supported and a node i supposed to advertise a willingness of WILL_DEFAULT during normal
operation.

Topology control messages As soon as one node’s MPR selector set is not empty, a node must
emit Topology Control (TC) messages to be broadcasted on the network. TC messages adver-
tise a node’s MPR selector set and thus allow to spread network topology information to every
node. Although TC messages are not emitted as often as HELLO messages, each message bears
an additional sequence number that is incremented each time a change in the advertised neigh-
bor set is detected (the ANSN: Advertised Neighbor Sequence Number). Upon reception of a
TC message, a node populates its topology set by adding new information and discarding that
information that was added by the reception of a previous TC message originating from the same
node with a smaller ANSN.

Routing table calculation As soon as a change in the 1-hop or 2-hop neighbor set or topology
set is detected, the routing table must be recalculated. Symmetric 1-hop neighbors must be reach-
able directly without the need of relaying. Routes for nodes that are farther away are computed
using a shortest path algorithm (Dijkstra or Bellman-Ford) on the graph formed by topology
information.

The multiple interface extension This extension adds a new type of message: the Multiple
Interface Definition (MID) to allow a node to advertise its additional interfaces. If a node has
more than one network interface participating in the OLSR protocol, it has to choose a main
address among its network interfaces. For all interfaces which address is not the main address,

24

the node has to advertise the interface address in a MID message that is to be forwarded using
the MPRs.

Interface addresses are only used in HELLO messages. All other message type that advertises
some node’s address must use its main address. Thus MID messages are only useful in populat-
ing one node’s 2-hop neighbor set to find the main address of a node given the address of one of
its interfaces.

The routing table calculation is a bit modified in that a node must add routes to all the known
interfaces (in terms of received MID messages) in addition to main addresses. Therefore, a rout-
ing table recalculation is triggered each time the MID set is changed.

The external networks extension If a node is connected to one or more networks not taking
part in the OLSR protocol, Host-Network Association (HNA) messages can be sent to advertise
them. A HNA message contains all the network addresses and prefixes the originating node is
willing to gateway.

Routing table calculation must be extended to add routes to external networks advertised in
received HNA messages. In addition, a routing table calculation is triggered each time the HNA
set is changed.

Link layer notification This part provides the possibility to use information extracted from the
MAC layer to populate (or rather depopulate) the link set. This part has not been implemented
in Polyester which remains independent of the MAC layer totally (in fact it can be used on plain
ethernet or even serial links).

The link hysteresis extension The relative quality of a link can be expressed by the frequency
at which its state changes and this can be taken into account in MPR selection. This part has not
been implemented in Polyester.

Redundant topology information extension Instead of advertising only its MPR selector set,
a MPR node can also advertise its MPR set and even its whole symmetric neighbor set. This
is provided to add topology information to allow for more routes to be selected in the routing
algorithm.

MPR Redundancy information This extension allows adding a stronger coverage criterion to
the MPR selection algorithm, requiring to choose MPRs so that each 2-hop neighbor is reached
by more than one (this is parameterizable) MPR node whenever possible.

3.3.2 Motivations

The whole development process was directed by two principal motivations: clarity and effi-
ciency. The code had to be evolutive because the project was to be the experimentation platform
for the next two years of work for the Safari Project. Clarity was thus required as a means to work
efficiently and not having to compromise large parts of the project by small changes. Besides, ef-
ficiency was required to make the project ready for definitive exploitation at each compilable
stage.

The idea was that since the model can be simply expressed formally, the code should be ex-
pressed in simple concepts that would hide somehow the intricacies of the inner functioning
away from the programmer. Nevertheless, clarity could not be preferred at the expense of effi-
ciency.

Existing C++ techniques for static generic programming are a way to satisfy these two re-
quirements if applied correctly.

According to the draft OLSR specification, the protocol can be expressed in a way that ab-
stracts the notion of address and thus the model could be made independent of the address

25

family used. So providing the model with a pluggable IP family was a motivation since the
beginning.

The name of the actual project was found at the end of the internship. At that time I asked
whether the code could be released as free software under the GPL licence, a question I have not
thought about asking at the beginning, but which was positively answered as soon as property
issues were clarified with other members of the Safari project. So I had then to find a suitable
name for the project if I wanted it to be made available publicly. So I applied the same method
that was used for Samba: I grepped the dictionary for words containing the four letters O L S
R. I finally found “polyester” and decided to flip capital P, which then looks very much like a
lower-case Q shifted upwards. This was fortunate, since the project was aimed to be carried on
beyond my internship and was destined to have QoS features included in the following months.

3.3.3 General architecture

TC

HELLO

MID

Interface Set

Duplicate Set

Local Route Set

Netlink socket interface

Remote Route Set

Gateway Set

HNA Set

MID Set

Two Hop Set

Link Set

Neighbor Set

Topology Set

Coherence Proxy

Message

Packet

Interface

ROUTING

CALCULATION

TABLE

HNA

user space

kernel space

MPR

SELECTION

Topology Graph

DIJKSTRA

Figure 3.7: The general architecture of Polyester. The part on the left represents message ex-
change, the thick grey arrows show the way data travels from and to packets. In the remaining
part, boxes with capitalized text represent procedures, whereas the other boxes represent actual
data sets. The thin black arrows indicate the flow of information between messages, sets and
procedures. The dashed line on the bottom shows the limit between the user and kernel spaces
and exhibit the system-dependent interface.

26

The whole project is about sending and receiving messages in packets and managing sets that
affect route calculation. Hence it is a mix of functionality of high level of abstraction (elements
and sets) and low level of abstraction (sockets, network interfaces and routes).

All the framework evolves around a scheduler that triggers timed events and input/output
events (though only input events are used for the time being).

Source organization

This conceptual segmentation implied the division of the source directory into the following
subdirectories:

alg/ General algorithms.
cst/ Preprocessor, OLSR-specific and compile-time defaults.
gra/ Graph data structures.
msg/ Message hierarchy.
net/ IP addresses and interfaces.
pkt/ Packet class.
sch/ Scheduler and event hierarchy.
set/ All set classes.
sys/ System interface for sockets, interfaces and routing.
sys/linux/ Linux kernel specifics.
utl/ General purpose utility classes.

Particular classes are grouped together into a separate source file, to ease code maintenance.
For each class, at most three files are used.

For example, take set::DuplicateSet class and its surroundings:

set/forward.hh This contains all pre-declarations of the set/ directory along with
typedef aliases for convenient use outside of the set namespace.

set/duplicate.hh This contains all the declaration part of set::DuplicateEntry
and
set::DuplicateSet along with the definition of the global
dup_set instance.

set/duplicate.hxx This contains all the methods’ and static attributes’ definitions.

This way of organizing the source C++ code minimizes the impact of intra-code dependencies.
Indeed, as soon as classes are pre-declared, their types can be used in method prototypes. As
soon as a class is declared (the implementation code of the methods is not known yet), it can be
instantiated and used inside any other class’s methods implementations.

Nevertheless, the declarations are still not fully independent, since a class’s attribute which
type is incomplete cannot be declared. A way to circumvent this problem is to declare the at-
tribute to be a reference to that type, so that the knowledge of that type’s constructors is not
necessary. This trick is dangerous, since the attribute’s existence must be ensured throughout the
class’s lifetime. That could be achieved by explicit instantiation in the heap at construction time,
but then it may inhibit some kind of optimization the compiler could apply if the instantiation of
the attribute was statically known.

In addition, there are obscure dependence between template parameters declaration.

3.3.4 Scheduling

The need for a scheduler is implied by the use of periodic events like message sending and per-
ishable information. There are many sets which elements need to be removed after their validity
of time has elapsed.

27

Since Linux provides each process with only one settable timer functionality — namely the
setting of a timer which sends a SIGALRM upon expiration — the use of several simultaneous
timers needs to be emulated.

This is done simply by maintaining a set of events ordered by next time of triggering (STL’s
std::multiset is a great way to implement time ordered sets) and setting the timer to the next
time of triggering.

Process I/O Events if needed

Shift next TC if needed

Recalculate Routes if needed

Recompute MPRs if needed

Process Timed Events if needed

Poll Interfaces

Figure 3.8: The main scheduler loop

At the same time, the scheduler uses the poll(2) system call to listen on interfaces for in-
coming packets. In normal operation, most of the time is spent in the poll(2) system call. When
a SIGALRM is received, the associated signal handling function is called. The sole purpose of the
signal handler is simply to mark the timed event set for processing. This marking is an atomic op-
eration which is important since signal handling can virtually happen while the process is doing
anything. When a signal is delivered and the process was inside a system call, the latter returns
an error indicating that it was interrupted by a signal (EINTR). This way the poll(2) call returns
and scheduler can check the mark for timed events and process all timed events which time of
next triggering has elapsed. After having processed a timed event, the scheduler removes the
event from the set, resets its time of next iteration and inserts the event back into the set. An in-
put/output is triggered simply by poll(2) returning a flag indicating that there is information
to be received or that some file descriptor is ready for writing.

There are two kinds of timed events: OnceEvent and PeriodicEvent. The first is intended
for those timed events that are to occur only once, whereas the second is for those that are to oc-
cur periodically. Periodic events support the so-called jitter in their triggering times, i.e. random
amount of time that the event is triggered ahead of its normal time of triggering. This functional-
ity is required for the sending of packets to avoid nodes to end up sending packets synchronously,
since that would make the packets collide.

28

3.3.5 Message handling

Receiving

When a packet is received, it is read from the file descriptor and fed into a pkt::Packet which
along raw data contains also information about the sending interface. The packet is then parsed
with pkt::Packet::parse() for message extraction.

For each message, after having checked its integrity (mostly against the message size de-
clared in the message header), the packet parser forwards the message for further parsing to the
message parser msg::Message::parse() along with the addresses of the sender and receiver
interfaces.

The message parser then makes some integrity checks of its own. At this point, a special case
is made for HELLO messages which cannot be forwarded. If the message is a HELLO message,
further processing is handed over to msg::HELLOMessage::parse() and processing stops. If
the message is of another type, the parser checks if the packet is not a duplicate, i.e. that is has
not been already processed earlier. The duplicate check is achieved thanks to the duplicate set.
If the type of the message is known, further processing is handed over to the respective specific
parser.

Whether the message type is known or not, the message is further considered for forwarding
on all interfaces according to the rules described in the RFC. If the message is to be forwarded
and the message type is known, the forwarding is handed over to the specific forwarder. Other-
wise, the message is handed over to the default forwarder msg::Message::forward()which
implements the default forwarding algorithm as described in the RFC. For now, any known mes-
sage that is forwarded is done so in the default way, so every specific forwarder in fact directly
calls msg::Message::forward().

Sending

Sending and forwarding is done pretty much the same way. Messages are never sent explicitly
from the core of the system. Since messages must be sent with a jitter correction in time, messages
are first scheduled to be sent later. The same holds for forwarding.

The events handlers for message sending or forwarding do not perform packet sending either.
They only put the message in the pending queue that is checked by the scheduler after every
timed events have been processed.

If there are pending messages to be sent, the scheduler then triggers the packet generation
mechanism in set::InterfaceSet::send_messages(), which builds packets one interface
at a time, for message generation is dependent on the interface on which the message is to be
sent.

This is a way to control the extent of message aggregation in packets. The construction of
the content of locally generated messages is deferred until the packet is filled with messages.
This allows messages to be generated according to the available room in the packet currently
being generated. For each pending message, the respective dump method is called (for example
msg::HELLOMessage::dump() for HELLO messages). The return value of the method allows
to decide whether the message needs to be regenerated/resent immediately because it did not fit
in the current packet.

The reason of the retarded message generation is due to the possibility of the messages to be
partial, i.e. contain only part of the information they advertise. This allows to have very large
amounts of information to be advertised in several messages. Each entry in a message has an
associated validity time (usually given in the message header and common to all the entries) that
indicates how long the information is to be kept valid in the neighbors’ internal sets. Therefore,
one node must ensure it advertises each entries often enough to forbid expiration in neighbors’
sets. This is achieved using time-stamps on local advertised elements. When a new message is
generated, the entries are inserted in the order of increasing last time-stamp and are stamped
as they are added to the message. When a node detects that there is no room left and there are
entries remaining to be advertised, it checks whether their stamp will be too old at next regular

29

generation. If those entries cannot wait for the next round, an additional packet is created and
filled with the remaining entries.

After all the pending queue has been processed, the packet is sent on the interface. If there
are messages remaining in the queue, another packet is generated and so on, until the queue is
empty.

Packet generation is done in such a way that all the packets are composed of the same propor-
tion of each message type, but message contents can differ1, since they depend on the interface
for which each message is generated (a good example of this are HELLO messages.

3.3.6 Sets handling

The delete set

This is a special set aggregating instances of subclasses of set::Deleter that are specialized
versions for any concrete type of object they are supposed to act upon. In fact the delete set is
mainly used for garbage collecting. Each time a perishable object is inserted to its respective set,
a deleter tagged with its date of removal is inserted into the delete set. This deleter instance
contains an iterator pointing to the element just added. Then once in a while, a “deleting” event
is triggered that iterates over the delete set in order of increasing date of removal and triggers the
action defined in the deleter (namely the set::Deleter::execute() virtual method).

When a perishable element of a set is removed in any other way from the set, the correspond-
ing deleter is removed from the delete set.

The link and neighbor set

These are the two most complicated sets to manage. This is due to the fact that they are correlated
in the following way: a neighbor exists if and only if it has one or more associated valid links.
Hopefully neighbors are not inserted explicitly into the neighbor set but must appear when a
corresponding link appears in the link set. On the other hand, the link set is populated explicitly
upon reception of HELLO messages. Besides, a neighbor’s status changes when certain proper-
ties on its links change.

Therefore, access to those two sets is shadowed by a proxy object that takes care of all the
coherence maintenance between the two sets. Any operation on one of the sets is performed
through the use of an instance of the set::CoherenceProxywhich contains instances of set::Link
and set::Neighbor.

The proxy class offers many ways of accessing the links and neighbors for several different
purposes. HELLO message generation requires iteration on all the valid (but not necessarily
symmetric) neighbors in increasing last HELLO stamp order. TC message generation requires
iteration on all the valid and symmetric neighbors in increasing last TC stamp order. The MPR
selection algorithm needs to iterate over the symmetric neighbors in no particular order. All these
variants of the neighbor set are implemented using subsets and indexes.

The 2-hop neighbor set

This set contains all the nodes that are symmetric to a symmetric neighbor. It is populated from
the HELLO message parser and its elements are perishable but can be explicitly removed by
the HELLO message parser if it detects that the connectivity is not actual anymore or that the
interface address was not the 2-hop neighbor’s main address. There may be several entries for
one given 2-hop neighbor, because it may be symmetric to several different symmetric 1-hop
neighbors. This redundancy is wanted since it is a key aspect exploited in the MPR selection
algorithm.

1This point was not obvious from the draft version 11 but has to be inferred from the way packets are forwarded on
multiple interfaces

30

The HNA set

This set contains all the Host-Network Association entries to be taken account of during routing
table calculation. It is populated by the HNA message parser and its elements are perishable (the
garbage collector is the only way to purge invalid elements).

The MID set

This set contains all the Multiple Interface Declaration entries to be taken account of during rout-
ing table calculation and main address calculation for some 2-hop interfaces. It is populated by
the MID message parser and its elements are perishable.

The topology set

This set contains information about the network topology contained in the TC messages received
from other nodes. It is populated by the TC message parser and its elements are perishable but
can be explicitly removed by the TC message parser if a TC message with a greater ANSN is
received.

The duplicate set

This set contains information about the messages already processed and already forwarded. It is
populated by the message forwarder and its elements are perishable (the garbage collector is the
only way to purge invalid elements).

The gateway set

This set contains information about the locally advertised external (non-OLSR) networks in HNA
messages. It is populated at startup and its elements are not perishable. It is possible to explicitly
remove some of its elements, but this feature is not used at this time.

This set contains an index to allow iteration in increasing stamp order, provided for HNA
message generation.

The interface set

This set contains information about all the OLSR interfaces used. It is populated at startup and
its elements are not perishable. It is possible to explicitly remove some of its elements, but this
feature is not used at this time.

This set contains an index to allow iteration in increasing stamp order, provided for MID
message generation.

3.3.7 Linux kernel specifics

This subsection presents all the specific problems I had to solve in order to make the things
actually work. Whereas all the core features of OLSR are system independent, since OLSR is a
routing protocol, the program must dive into the system specific dirt at some time.

Network interface information retrieval

First of all, at initialization, network interface information must be retrieved for two purposes:
minimum interface MTU calculation and IP address retrieval.

Packet construction requires to know in advance the maximum data size that a network
packet can contain to avoid fragmentation by the IP layer. If a broadcasted packet is fragmented,
chances to loose it are multiplied and we cannot rely on flow control to avoid collisions.

31

On Linux kernels, there are several ways to retrieve a given interface’s MTU, but I chose to
use the newest way which is the use of Netlink communication. Netlink sockets are a way for
user-land processes to communicate with parts of the kernel. It is already used for interface
parameter setting and retrieval, interface address setting and retrieval, firewall parameter setting
and retrieval, ARP table management, IPv4 and IPv6 routing table management and increasingly
many others. This was thus the best thing to use in order to spare efforts, since all three system
dependent operations we needed were possible by the use of Netlink sockets.

Since Netlink messages must be built and parsed in a very specific way, I decided to make use
of a well known design pattern in object oriented modelling: hierarchies of message and visitor
classes.

So to extract interface parameters, one has only to build a request using predefined request
message classes and define a specific visitor that extracts the relevant informations from the ker-
nel response messages.

Routing table management

Routing table management is done in the same way interface information is retrieved. An infor-
mation retrieval or setting request is instantiated and sent to the Netlink socket. In fact, retrieval
is not used at this time, since the program maintains its own version or OLSR route set, to avoid
having to parse the routing table entries each time an operation is performed. So only good
completion of the setting operation is checked after a request has been sent.

When one is manipulating the routing table, one has to be careful not to try to set a new route
with a gateway for which no route actually exists. Therefore, routes are separated into two kinds:
local routes and remote routes. A local route is one that concerns a destination directly reachable
through one of the node’s interfaces and is defined by its destination address, a prefix length and
an output interface. On the other hand, a remote route is one that concerns a destination which is
not reachable directly but only through a relaying node that is accessible directly (i.e. for which a
local route exists) and is defined by its destination address, a prefix length and a gateway address.
So to avoid incorrect route insertion, local routes need to be added before remote routes. In the
case of route removal, the order is reversed: remote routes are removed first.

To maintain maximum connectivity while updating the routing table, a node maintains an
internal copy of its routes (which as said before, avoids having to parse the routing table). When
a new version of the routing table is calculated, only the difference between the old table and the
new table is processed. The difference is calculated in both ways, to get routes to be removed and
routes to be added separately. So the routing table updating scheme goes as follows:

1. Add new local routes

2. Add new remote routes

3. Remove old remote routes

4. Remove old local routes

3.3.8 Various utility features

Time calculation

Each time a time duration or date is needed, the utl::TimeVal class is used. This class imple-
ments all needed time operations such as getting the current time, addition and subtraction of
dates, multiplication and division by a float, etc.

At many places, current time is required for comparison or time-stamping purposes. To avoid
having to call the gettimeofday(2) system call each time the current date is needed as well
as to allow checking for simultaneity and because that date would not be exact anyway (since
Linux is not a real-time kernel), the current time is took from a static attribute of the class that is

32

updated once in the scheduler loop. Thus every operations in one scheduler loop appear to be
simultaneous. A static method returning the effective real time is provided for future use (e.g.
for time-stamping received and emitted packets) and for the use in the SIGALRM handler.

Validity and holding time calculation

In packet and message headers, time durations are often expressed in a special two-byte floating
point format which operations are described in the RFC. This is implemented in the utl::Vtime
class and supports construction from and coercion to a raw two-byte word for use in message and
packet construction. Of course, conversion from and to utl::TimeVal is provided.

Sequence numbers

Packet and message sequence numbers are defined with specific arithmetic and comparison op-
erations to allow overlapping. The utl::Seqnummeta-class allows the use of concrete sequence
number classes instantiated for a particular internal representation.

Shared data buffers

To allow easy memory management of temporary buffers used in packets, special utl::Data
and utl::ConstData classes are provided. They implement buffer sharing that minimizes
whole buffer copying in message forwarding, etc.

Stampable components

The utl::Stampable component class is provided for construction of time-stampable objects
to be used in sets indexed by time-stamp order.

Static iterator decorators

The management of perishable elements in sets required the use of several special design patterns
that would hide all the underlining checks for validity. Thus a particular set can implement a
plain set of elements internally and provide access to a so-called “masked” set for external use.
Such a masked set is just a special iterator that gives access only to elements that verify a given
predicate (for simple perishable sets, this predicate is true if and only if the element had not yet
expired) and when incremented, “jumps” over other element until the predicate is true or the end
of the set is reached. Thus utl::MaskIterator is a static decorator that is instantiated with a
particular iterator, set, access predicate and action functor to form a new iterator class. The action
functor is provided for the case when an element that does not verify the predicate must be acted
upon (e.g. time-stamped).

For ordered sets that index elements on one particular attribute, there is no real reason why
an iterator of a mutable set should dereference to a constant element, forbidding modification of
“non indexing” attributes. For this purpose, there is a utl::DeconstIterator static decorator
that dereferences to mutable objects. The only thing that the programmer has to do to keep safety
is to declare indexing attributes to be constant in the element class. This could even be ensured
statically using meta-programming techniques (but the subject has not been studied exactly yet).

There are many places where a set of elements needs to be iterated on in different orders. To
ensure the fastest possible iterations, different ordered sets would have to be kept at all time. But
to avoid keeping multiple sets of the same element type and thus multiple copies of the same
element, there had to be one set of the elements per se and the other sets would be composed of
iterators to elements contained in the first set. But to hide this trick from external use, the iterators
on the other sets would have to automatically dereference correctly to the object itself. For this
purpose, the utl::DerefIterator static decorator was created along with a type traits system
to allow correct dereference if the decorator decorates an already decorated iterator.

33

All these iterator decorators automatically add information in the std::iterator_traits
for compatibility with the STL.

Static set decorators

To simply implement indexes, utl::Index is provided with all correct methods and utl::DerefIterator
iterator definitions. The internal representation (std::set or std::multiset) can be chosen
at instantiation time along with the element and original iterator type.

To simply implement masked sets, the utl::Subset set decorator is provided with all cor-
rect methods and utl::MaskIteratordefinitions. All parameters required for utl::MaskIterator
are parameters of utl::Subset with reasonable defaults, to allow maximum versatility.

3.3.9 Particular aspects with respect to RFC 3626

Routing table calculation

The RFC document describes some kind of greedy shortest path algorithm based on the topology
set and the symmetric neighbor set to compute routes towards every node in the network. The
algorithm is similar to the Dijkstra algorithm which find shortest paths in terms of number of
hops.

Since Polyester is aimed at experimentation of other routing metrics not necessarily expressed
in number of hops (e.g. transmission delay, available bandwidth, packet loss probability, etc), the
shortest path algorithm had to be extracted and rendered independent of the core OLSR data
structures. This was done by writing a real Dijkstra algorithm and by maintaining a real graph
structure along with OLSR internal sets. This way, any graph operation can be later performed
on the topology graph without interfering with the core.

The routing table calculation is done in two steps, local routes are calculated first and only
remote routes are calculated using the Dijkstra algorithm. There are numerous reasons for this
distinction:

• Local routes are different from remote routes as far as routing tables are concerned.

• The routing calculation algorithm must provide a gateway address for each remote route
and that’s not easy if one only known the output interface.

• A direct destination has to be reached directly and not through another node. Even consid-
ering other QoS metrics, this assumption cannot be false since sending to one node affects
the medium all around the sending node, so direct sending to a 1-hop neighbor is always
the most efficient way of reaching it.

3.3.10 Aspects of the free software project

Since the project was to be released under the GNU GPL[29], I wanted it to have all friendly
features of free software projects that make them easier to port and compile.

Autotools

The code as it has been first written was relying on the kernel’s providing the Netlink socket
functionality. Since as far as I know only Linux 2.4 offers it, the code is highly dependent on it.

Nevertheless, system-dependent features being clearly separated from the core features of the
project, porting should be easy.

To help managing system and compiler particularities, the use of autoconf/automake [30]
comes in handy. It provides user-friendly tools to configure and compile the project. It allows to
easily configure the source tree to be compiled with a cross-compiler, which in this case was very
interesting for experimentations. Another handy feature is the ability to configure the sources

34

in two different ways at once using two separate build directories. This allows making modifi-
cations to the sources and compiling it immediately for the workstation and the PDAs, without
making two separate configurations one after another.

Doxygen

Doxygen is a nice tool that extracts code documentation from specially formatted comments in
the source files and uses them to generate either electronic documentation in HTML or printable
documentation in LATEX or PDF.

Web site

The need for a minimal web site was obvious since the first snapshot release of Polyester and
has been created quickly1, in order to present the project to collaborating groups from the Safari
project.

The site still lacks some interesting features as can be provided by sites such as Savannah2 or
SourceForge3 like mailing lists with public archives, a bug-tracking system, public CVS tree, etc.

The opening of mailing lists have been delayed due to the current impossibility to use GNU
Mailman4. The only available mailing list system on the LRI network is Majordomo which does
not provide such convenient web interface, so there are ongoing efforts to find a good solution.
But this is not (yet) a dramatic issue since current number of known users can be reached by mail
individually without much trouble. The email address provided as a contact5 forwards incoming
mail to the four people currently involved in the development and experimentation.

1QoS support in OLSR http://qolsr.lri.fr
2http://savannah.gnu.org
3http://www.sourceforge.net
4http://www.gnu.org/software/mailman/
5qolsr@lri.fr

35

http://qolsr.lri.fr
http://qolsr.lri.fr
http://savannah.gnu.org
http://savannah.gnu.org
http://www.sourceforge.net
http://www.sourceforge.net
http://www.gnu.org/software/mailman/
http://www.gnu.org/software/mailman/
mailto:qolsr@lri.fr

36

Chapter 4

Conclusion

4.1 Interest of the internship for the LRI Networking group

An original point of view

My personal experience being very heterogeneous, I hope I have some interesting thoughts at the
crossing of fields and bringing original points of view.

Strong Linux skills

My rich experience with Unix-like operating systems allowed me to be quickly operational for
an efficient use of the tools that were provided to me for experimentations. I had no particular
problem with dealing with incompatible patches or kernel recompilations. I was not afraid by
specific tasks of Unix and network administration and I familiarized quickly with new tools for
IPv6 network configuration.

Strong working independence

Through the years, including before beginning studies at ÉPITA, I was a self-taught computer
technician and engineer. I know where to look for the information I need∗, so I am very indepen-
dent in my work. This was a key point during my internship because the work I did most of the
time was quite different from other workers’. Nevertheless, interaction was more evident during
the bibliographical research period, since this was exactly the field of the people surrounding me.

A starting point for the first deliverable

My bibliographical work ended with the writing of a state-of-the-art paper on the subject of
QoS routing in mobile ad hoc networks which was used as a starting point for a more general
state-of-the-art deliverable on routing models for mobile ad hoc networks required by the Safari
time-line.

A working experimental platform

The main interest for the group has been to get a working implementation of the OLSR protocol
with IPv6 support for the in-the-field experimentations of QoS-aware routing algorithms. These
methods were previously worked out and formally described in scientific publications. But theo-
retical proof of routing algorithms is not of much interest, since there are lots of uncontrolled pa-
rameters in real world applications. Routing algorithms are usually tested in network simulators
that approximate physical conditions with simpler models and spit out statistics about extreme

∗Yes, I do actually RTFM.

37

cases like huge numbers of participating nodes or harsh physical conditions. But nothing beats
real world, in-the-field, down-the-street, deep-inside-the-reinforced-concrete-jungle experimen-
tations. Sometimes certain unobvious features appear only with a handful of nodes.

Another way for the group to get a working OLSR implementation with IPv6 support would
be to wait until the HIPERCOM team at INRIA Rocquencourt gets IPv6 support into its own
implementation. That is obviously not an easy task, since it seems that they are still in the process
of doing it.

The ability to re-implement the protocol from scratch using C++ allowed faster development
and still a high degree of efficiency. If the same had to be achieved using the C language, it
would require much more time, since all the core parts that are dealing with sets would have to
be coded by hand (or using some kind of dynamic library which would have slowed down the
code). Unfortunately C++ static genericity programming techniques are not widely known (yet)
in the networking community and C is believed to be the most efficient language.

4.2 Personal interest of the internship

My personal interest of the internship is manifold.

Social interest

The ability to confront by vision and my working methods with those of people from multiple
backgrounds was a very exciting experience. I think diversity is the most important source of
creative wealth. This was the occasion for me to meet people from a quite different field, al-
though academic it was more linked to industrial concrete applications. While I happened to
have slightly negative feelings regarding industrial applications, I convinced myself that they
can be very interesting in academic working contexts, as long as commercial profit does not taint
the technical challenge.

Professional interests

This professional experience was a good way for me to meet another scientific research working
environment. The whole field of networking appeared to be really fascinating and at the same
time very rewarding when I could see the practical result of my work.

It appeared to have pleased my employer as well, since I have been hired as a part time engi-
neer to continue working with the team, during my master year. I would very much like to work
further theoretical matters involving QoS in wireless networks during the master’s internship.

Free software engineering experience

I am very pleased with the fact that my work ended up in a free software project. Although this
takes me a lot of time, I would like to maintain it as long as I could to see it evolve and gain
interest as new features are added along.

For the time being, a few people have contacted me with question regarding its use and web
page statistics show that people continuously monitor it and download the snapshot packages.

I think that mobile wireless ad hoc networks, though not yet in common use should gain more
and more interest over the years to come. Besides, I think that Polyester will greatly benefit from
the current experimental work with QoS routing when first QoS-featured releases will hit the FTP
server(s).

4.3 Looking back and perspectives

I am continuously asking myself whether that work could not have been done in a more efficient
way. Although I have hit bumps along my way, I think that code needs some maturing time

38

and that although modelling techniques exist to quickly built a project architecture, I don’t think
any of them would have given a solution for a problem that is both abstract and constrained by
concrete requirements (memory consumption and speed).

If I knew since the beginning that I would have to re-implement the whole protocol from
scratch, I would certainly begin the internship doing that part in order to have more time later
to experiment with QoS routing methods. On the other hand, I think that without the theoret-
ical knowledge I acquired during my bibliographical study, I would maybe have missed some
important features that have been directing the model since the beginning. The implementation
would maybe be not as modular as it is today.

Now my perspectives related to this are simply the continuous work on the project, though
maybe not alone anymore, since a fourth year student is going to assist me during his internship
starting mid-January. I would very much like to bend my work towards the study QoS routing
models including QoS metrics measurements which appear to be quite a challenge at this time.

39

40

Bibliography

[1] IEEE 802.11 Wireless. http://standards.ieee.org/getieee802/802.11.html.

[2] Programming languages — C++. International Standard 14882, ISO/IEC, September 1998.

[3] David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic source routing protocol
for mobile ad hoc networks (DSR). Internet-Draft Version 09, IETF, April 2003.

[4] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector (AODV) rout-
ing. RFC 3561, IETF, July 2003.

[5] R. Ogier, F. Templin, and M. Lewis. Topology dissemination based on reverse-path forward-
ing (TBRPF). Internet-Draft Version 11, IETF, October 2003.

[6] T. Clausen and P. Jacquet. Optimized link state routing (OLSR) protocol. RFC 3626, October
2003.

[7] IPv6, Théorie et pratique. Third edition, March 2002.

[8] S. Bradner and A. Mankin. IP: Next generation (IPng) white paper solicitation. RFC 1550,
IETF, December 1993.

[9] S. Bradner and A. Mankin. The recommendation for the ip next generation protocol. RFC
1550, IETF, January 1995.

[10] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specification. RFC 2460, IETF,
December 1998.

[11] J. Postel. Internet protocol. RFC 791, DARPA, September 1981.

[12] R. Braden. Requirements for internet hosts — communication layers. RFC 1122, IETF, Oc-
tober 1989.

[13] F. Baker. Requirements for IP version 4 routers. RFC 1812, IETF, June 1995.

[14] R. Hinden and S. Deering. IP version 6 addressing architecture. RFC 2373, IETF, July 1998.

[15] R. Hinden. Proposed TLA and NLA assignment rules. RFC 2450, IETF, December 1998.

[16] S. Kirkpatrick, M. Stahl, and M. Recker. Internet numbers. RFC 1166, IETF, July 1990.

[17] S. Thomson and T. Narten. IPv6 stateless address autoconfiguration. RFC 2462, IETF, De-
cember 1998.

[18] R. Hinden and S. Deering. IPv6 multicast address assignments. RFC 2375, IETF, July 1998.

[19] IEEE Std 802.11-1999 Information Technology— Telecommunications And Information exchange
Between Systems— Local And Metropolitan Area Networks— specific Requirements— Part 11:
Wireless Lan Medium Access Control (MAC) And Physical Layer (PHY) Specifications, 1999.

41

http://standards.ieee.org/getieee802/802.11.html
http://standards.ieee.org/getieee802/802.11.html

[20] C. Hedrick. Routing information protocol. RFC 1058, IETF, June 1988.

[21] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). RFC 1771, IETF, March 1995.

[22] J. Wroclawski. The use of RSVP with IETF integrated services. RFC 2210, IETF, September
1997.

[23] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differ-
entiated services. RFC 2475, IETF, December 1998.

[24] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services field (DS
field). RFC 2474, IETF, December 1998.

[25] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet architecture: an
overview. Technical Report 1633, IETF, 1994.

[26] Chunhung Richard Lin and Jain-Shing Liu. QoS routing in ad hoc wireless networks. IEEE
Journal on Selected Areas in Communications, 17(8):1426–1438, August 1999.

[27] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum, and L. Viennot. Optimized
link state routing protocol. In IEEE INMIC Pakistan, 2001. Best paper award.

[28] J. Moy. The OSPF specification. RFC 1131, IETF, October 1989.

[29] The GNU General Public License. http://www.gnu.org/copyleft/gpl.html, June
1991.

[30] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. GNU Autoconf, Automake, and Libtool.
New Riders, October 2000.

42

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Appendix A

Glossary

Boot-loader A small piece of software that usually resides on read-only memory
(though often erasable) that is in charge of loading the kernel image into
memory and start the operating system.

CDMA Code Division Multiple Access.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CSMA/CD Carrier Sense Multiple Access with Collision Detection.

DiffServ Differentiation of Services.

Hop One network link as a part of a route.

IEEE 802.11 The family of standards published by the Institute of Electrical and Elec-
tronics Engineers, describing the Medium Access Control (MAC) and
physical layer specifications.

IntServ Integration of Services.

IPv6 The next generation of Internet Protocol that supports a much greater ad-
dress space and several other interesting features like auto-configuration,
security, etc.

Iterator The abstraction of a pointer in object-oriented programming. Most of the
time used to iterate on each elements of a set.

Link The relation between two nodes that represents their ability to exchange
information directly.

Node An autonomous system with one or more network interfaces.

Packet scheduling The ability to process incoming and outgoing data packets in a better way
than in a First In First Out (FIFO) fashion.

43

QoS Quality of Service.

Route The sequence of nodes that connects one node to another in a network.

Routing The ability to forward data packets not destined to the current node to the
correct next hop towards the destination.

Static decorator A generic design pattern that adds a set of new features to an already de-
clared class.

Static genericity The ability to program using elements of reusable software that are spe-
cialized and optimized at compile time.

Station −→ Node.

TDMA Time Division Multiple Access.

44

	Introduction
	The subject
	Ad hoc networks
	Routing in MANETs
	QoS routing in MANETs

	The LRI
	State of knowledge
	My own state of knowledge
	Working environment

	Organization and time-line
	Setting up of the working platform: 1 month
	Bibliographical research: 2 months
	Development of the OLSR implementation: 3 months
	Comments on the time-line

	Technical details
	Development and testing platform
	The cross-compiler
	The Familiar distribution
	The USAGI IPv6 stack
	Other specifics of cross-compilation for ARM

	QoS routing in mobile ad hoc networks with IPv6 support
	IPv6 specifics
	IEEE 802.11 Wireless networking
	Routing in mobile ad hoc networks
	QoS considerations

	Internals of Pps: currentpoint currentpoint translate scale neg exch neg exch translatetops: currentpoint currentpoint translate 1 div 1 div scale neg exch neg exch translate11to--1olyester
	Introduction
	Motivations
	General architecture
	Scheduling
	Message handling
	Sets handling
	Linux kernel specifics
	Various utility features
	Particular aspects with respect to RFC 3626
	Aspects of the free software project

	Conclusion
	Interest of the internship for the LRI Networking group
	Personal interest of the internship
	Looking back and perspectives

	Glossary

